

Heliostat Consortium Roadmap: Advanced Manufacturing Gap Analysis

Randy C. Brost Sandia National Laboratories

September 30, 2022

Outline

- HelioCon overview
- HelioCon Advanced Manufacturing Gap Analysis
- Observations on High-Performance Manufacturing
- Pointer to HelioCon Request for Proposals.

HelioCon Objectives and Scope

- Heliostat Consortium (HelioCon): a DOE initiative to advance heliostat technologies
- Objectives
 - Form U.S. center of excellence focused on heliostat technologies.
 - Develop strategic core validation and modeling capabilities and infrastructure at DOE's national laboratories (NREL and Sandia).
 - Promote workforce development by integrating academia, industry, and all stakeholders.
- Scope 6 Topics
 - Metrology and Standards
 - Components and Controls
 - Advanced Manufacturing
 - Resource, Training and Education
 - Field Deployment
 - Techno-Economics Analysis
- Heliostat Consortium (HelioCon): a DOE initiative to advance heliostat technologies
 - 1/3 of the budget is allocated for external funding in order to expand the consortium member base.
 - A request for proposal (RFP) was recently issued to solicit proposals for this funding.
- Support but not develop specific heliostat designs

HelioCon Advanced Manufacturing Gap Analysis

Topic: Advanced Manufacturing

Funded by:

Roadmap Study – Advanced Manufacturing Study Method (Co-Lead: Parthiv Kurup) <u>Inputs:</u>

- Estimating value of autonomy survey (prior work).
- HelioCon Roadmap Workshop, Advanced Manufacturing breakout sessions.
- Interviews with industry experts. Companies contacted include:
 - BrightSource Energy
 - COBRA
 - Gonzalez Group
 - Heliogen
 - SkyFuel (retired)
 - Solar Dynamics
 - Solar Reserve (retired)
 - Tewer
 - University of Arizona

Topic: Advanced Manufacturing

Roadmap Study – Initial List of Gaps

	No.	Gaps	
	Knowledge for product design		
	AM1	Lack of a stable market enabling continuous improvement	
	AM2	Wind load data/analysis to enable mass reduction	
-	AM3	Optimum heliostat utilizing composite facet/array designs not fully understood	
	AM4	Lack of experience designing heliostats for high-productivity manufacturing: • Access to expertise in early design phases (e.g., high-volume, automotive)	
		• Developers don't know how to find automation providers	
	AM5	Trade-off between face-up and face-down stow not fully understood	
	AM6	Variable focus heliostats and their economic benefit not understood	
	AM7	Rules of thumb for fabrication, material, and component costs	
	AM8	CAD-based tolerance analysis for mirror array backing structures	
		for process design	
	AM9	Facet/array fabrication process knowledge, with multiple prescriptions:	
		• Injection molding	
		• Wide-area adhesive application	
		• Sandwich construction	
		• Frame attachment	
		• Canting control	
		 Knowledge and use of fastening technologies Material alloy and thickness selection for efficient manufacture 	
	AM10	Lack of experience designing high-productivity manufacturing lines:	
	AWII0	 Access to expertise in early design phases (e.g., high-volume, automotive) 	
		 Developers don't know how to find automation providers 	
		 Risks from lack of automation experience 	
		 Perception of required capital not sufficient 	
	AM11	Field installation automation support	
	Standard des	· · ·	
	AM12	Standard facet specification	
	AM13	Standard facet production, including multiple prescriptions	
	AM14	Standard baseline design	
	05	nd calibration	
	AM15	Specialized metrology tools not mature enough for factory use	
		 Not compatible with factory environment 	
		• Calibration checks	
		• Statistical process control	
	AM16	Metrology for molds	
	AM17	Metrology for mirror array backing structures	

Topic: Advanced Manufacturing

Selected industry comments (paraphrased):

There are two fundamental design approaches to heliostat design which we have seen succeed. In one approach, facets are designed as self-supporting structures that are responsible for achieving optical tolerances as a stand-alone unit. These are then assembled into an array, and canting angles set to achieve overall heliostat optical shape. In the second approach, individual mirror facets are not self-supporting, and do not achieve their final optical shape until included in a mirror array which simultaneously determines the facet optical shape and overall heliostat canting and optical shape. Among these, the second method can achieve the lowest cost, but it requires very rigorous execution of the final assembly step.

Our future vision of heliostats is facet mirrors that are composite structures, with 1.1 mm commercial glass mirrors supported by a rigid backing structure. This has several advantages: Reduced material cost, weight and reduced structural support, all of which reduce cost, increased reflectivity (from 94% to 96%), increased stiffness, and increased operation in wind, all of which increase energy production, plus additional cost reduction due to decreasing the solar field size by 2%.

Engaging automation developers early in the heliostat design process is important achieve high automation performance.

Some heliostat developers do not have experience designing with material alloys and thicknesses that are customized for highvolume manufacturing. This is common practice in the automotive industry. Automotive Advanced High Strength Steels (AHSS) can offer significantly higher strength but retain good weldability and formability. Automotive steel grades that come in coil form are also typically readily available with galvanized coatings. Automotive aluminum grades are available with pretreatments for adhesive bonding so surface prep, which is critical in adhesive bonding of aluminum, isn't necessary.

Ranked Gaps

From the Roadmap:

Tier 1 Gaps (Most Important)			
AM1	Innovative heliostat mirror facet/array designs needed	-	
	 Example: composite designs 		
AM2	Insufficient facet/array fabrication process knowledge, including:		
	○ Injection molding		
	 Wide-area adhesive application 		
	 Laminated mirrors 		
	 Sandwich construction 		
	 Frame attachment 		
	 Canting control 		
	 Knowledge and use of fastening technologies 		
	 Material alloy and thickness selection for efficient manufacture 		
	 Composite structures 		
AM3	Heliostats not designed for high-productivity manufacturing, due to:		
	 Lack of access to expertise in early design phases 		
	(for example, high-volume, automotive)		
	 Developers don't know how to find automation providers 	-	
AM4	Lack of heliostat developers' experience designing high-productivity		
	manufacturing lines, due to:		
	 Lack of access to expertise in early design phases 		
	 Difficulty finding automation providers 		
	 Risks from lack of automation experience 		
Tion O O o no	 Perception of required capital is not sufficient 	-	
Tier 2 Gaps		-	
AM5	Trade-off between face-up and face-down stow not fully understood ¹	-	
AM6	Variable focus heliostats and their economic benefit not understood	-	
AM7	Lack of field installation and quality assurance automation support	-	
AM8	Specialized metrology tools <u>not mature</u> enough for factory use		
	 Not compatible with factory environment 		
	 Calibration checks Statistical process control 		
4140	• Statistical process control	-	
AM9	Lack of knowledge about creep behavior of adhesives and PU foams (used for sandwich constructions)		
AN410		-	
AM10	Lack of knowledge of typical ground conditions for foundation design	-	
AM11	Lack of low-cost production method for concrete foundation elements	-	
AM12	Lack of a standard baseline design	-	
	(Least Important)	-	
AM13	Lack of rules of thumb for fabrication, material, and component costs	-	
AM14	No CAD-based tolerance analysis for mirror array backing structures		
AM15	Lack of a standard facet specification	¹ Revi	
AM16	No standard facet production methods, including multiple prescriptions	"No	
AM17	Metrology for molds not widely understood	Sand	
AM18	Metrology for mirror array backing structures not widely understood	https://pr	

Funded by: SOLAR ENERGY

TECHNOLOGIES OFFICE U.S. Department Of Energy

 ¹ Reviewer pointer: Blackmon, J. B,
 "Non-Inverting Heliostat Study",
 Sandia Report SAND78-8190, July 1979. https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/1978/788190.pdf

Observations on High-Performance Manufacturing

High-Performance Manufacturing Notes*

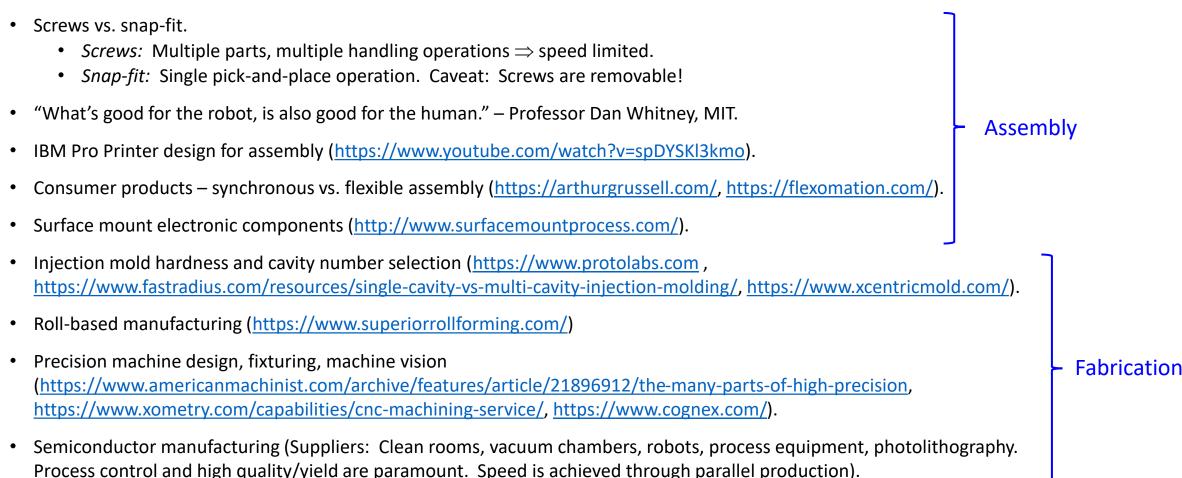
Funded by:

The most important takeaway:

• Many companies design a product, and then consider manufacturing. This is a lost opportunity.

The highest-performance manufacturing results from considering high-productivity manufacturing from the start of design.

• High-performance manufacturing vendors actively support this. Nonetheless, they still encounter customers who engage them after design.


Key principles:

- Take work out of the design.
- Take parts out of the design.
- Take material out of the design.
- Seek solutions which simultaneously increase quality and reduce work.
- Select processes which inherently produce high quality at high speed.
- Select materials which enable these processes.
- Invent to fill gaps if needed.
- Select tooling for high productivity, considering production volume and target takt time.
- Ensure high quality control at many steps along the process don't add value to defective work.
- Employ automation for the benefits it brings to each specific design, not "for automation's sake."

* Drawn from author's experience.

High-Performance Manufacturing Notes

Examples:

SOLAR ENERG TECHNOLOGIES OFFIC U.S. Department Of Energ

<u>Selected industry comments (paraphrased):</u>

There are two fundamental design approaches to heliostat design which we have seen succeed. In one approach, facets are designed as self-supporting structures that are responsible for achieving optical tolerances as a stand-alone unit. These are then assembled into an array, and canting angles set to achieve overall heliostat optical shape. In the second approach, individual mirror facets are not self-supporting, and do not achieve their final optical shape until included in a mirror array which simultaneously determines the facet optical shape and overall heliostat canting and optical shape. Among these, the second method can achieve the lowest cost, but it requires very rigorous execution of the final assembly step.

Our future vision of heliostats is facet mirrors that are composite structures, with 1.1 mm commercial glass mirrors supported by a rigid backing structure. This has several advantages: Reduced material cost, weight and reduced structural support, all of which reduce cost, increased reflectivity (from 94% to 96%), increased stiffness, and increased operation in wind, all of which increase energy production, plus additional cost reduction due to decreasing the solar field size by 2%.

Engaging automation developers early in the heliostat design process is important achieve high automation performance.

Concurrent product and process design

High-speed, high-quality processes

Some heliostat developers do not have experience designing with material alloys and thicknesses that are customized for highvolume manufacturing. This is common practice in the automotive industry. Automotive Advanced High Strength Steels (AHSS) can offer significantly higher strength but retain good weldability and formability. Automotive steel grades that come in coil form are also typically readily available with galvanized coatings. Automotive aluminum grades are available with pretreatments for adhesive bonding so surface prep, which is critical in adhesive bonding of aluminum, isn't necessary.

Remove

work

parts and

of Increase quality and performance

Remove

work

HelioCon Request for Proposals

HelioCon Request for Proposals

Heliostat Consortium (HelioCon):

www.heliocon.org

HelioCon Roadmap Report:

www.heliocon.org/roadmap_report.html

HelioCon Request for Proposals (RFP):

https://heliocon.org/request_for_proposal.html

RFP Webinar:

October 10, 2022 4:00 p.m. MDT

https://nrel.zoomgov.com/meeting/register/vJltcu-prjMiHtbz5Pw_5yEkaELwEprnOGg

Questions to:

HelioCon.RFP@nrel.gov

